
Effect of space ratio and
corrugation angle on

convection enhancement in
wavy channels

G. Comini, C. Nonino and S. Savino
Dipartimento di Energetica e Macchine, Università degli Studi di Udine,
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Abstract By neglecting the influence of tubes, this paper adopts a simplified two-dimensional
approach to deal with laminar convection of air through wavy finned-tube exchangers. Pressure
drop and heat transfer characteristics are investigated in the fully developed region of the flow
channels between adjacent fins. The solutions are presented for several space ratios (height over
length of a module) and two corrugation angles. They concern laminar flows both below and above
the onset of the self-sustained oscillations that precede the transition to turbulence. Fully developed
velocity and thermal fields are computed by imposing anti-periodic conditions at inlet/outlet
sections of a single calculation cell. In the range of Reynolds numbers investigated, Nusselt
numbers and friction factors first increase with space ratios (up to a value depending on the
corrugation angle), then start decreasing with increasing space ratios.
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Nomenclature
a ¼ thermal diffusivity
A ¼ peak-to-peak amplitudes of time

oscillations of the Nusselt number
Dh ¼ hydraulic diameter
f ¼ friction factor
h ¼ convection heat transfer coefficient
H ¼ height
j ¼ Colburn factor for heat transfer
L ¼ length of a corrugation module
Nu ¼ Nusselt number
p ¼ pressure
p̃ ¼ periodic component of pressure
Pr ¼ Prandtl number
q ¼ heat flow rate
Re ¼ Reynolds number
S ¼ area of the exchange surface
St ¼ Strouhal number
t ¼ temperature
u,v ¼ velocity components in the (x, y)

directions

x, y ¼ Cartesian coordinates
y 0 ¼ distance from the lower boundary in

the y direction
a ¼ overall pressure gradient in the flow

direction
b ¼ corrugation angle
n ¼ kinematic viscosity
q ¼ time
u ¼ dimensionless time
Q ¼ period

Subscripts
b ¼ bulk
i ¼ inflow
lm ¼ logarithmic mean
o ¼ outflow
w ¼ wall

Superscripts

¯ ¼ space-averaged value
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Introduction
To reduce the airside thermal resistance in compact heat exchangers, recourse
is usually made to extended surfaces in the form of fins. This way the exchange
area can be considerably increased. In modern applications, however, also
convection coefficients must be augmented since, to limit noise emissions,
frontal air velocities are maintained low and the resulting flows are in the
laminar, or transitional range. Among the surfaces that present convection
enhancing irregularities, wavy fins have been frequently employed in the past
for their simplicity, and are still preferred today in many low-cost applications.
By simplifying the actual flow in a tube-fin exchanger to a channel flow
between parallel fins, we neglect the presence of tubes. However, we can still
adequately model the flow in the passages between adjacent wavy fins, and
make significant comparisons with the flow in the corresponding passages
between adjacent plain fins.

Forced convection in wavy channels has been extensively studied in the past
as illustrated, for example, in the review by Ergin et al. (2001). Here we present
a critical discussion of the studies which are most relevant to this paper.
Pioneering work on wavy channels was carried out by Goldstein and Sparrow
(1977). They used the naphtalene sublimation technique to determine
convection coefficients in a short domain consisting of only two corrugation
cycles. The corrugation angle b was equal to 218 and the space ratio, height H
over length of a corrugation cycle L, was equal to 0.178. It was found that
flow separations on the peaks of the corrugations caused a decrease in the local
heat transfer rates, while relatively large increases were evidenced in the
reattachment regions. The global effect was neutral, at least for low Reynolds
number flows.

A few years later, using water as the working fluid, O’Brien and Sparrow
(1982) and Sparrow and Comb (1983) determined convection coefficients and
friction factors in a channel with ten corrugation cycles and a corrugation angle
b ¼ 308: The height of the channel was changed in order to obtain two values
of the space ratio (H=L ¼ 0:419 and H=L ¼ 0:289). In the turbulent flow
regime investigated ð1;500 # Re # 25;000Þ; both friction factors and
convection coefficients were significantly enhanced with respect to a parallel-
plate channel. In particular, the increase in the space ratio gave rise to a
30 per cent increase in the fully developed Nusselt number, but the friction
factor more than doubled. Thus performance differences between the two
channels (with identical pumping power, pressure gradient, or mass flow), were
not sufficiently great to indicate a clear superiority of one over the other.

The effect of the space ratio on heat transfer and pressure drop was
investigated also by Molki and Yuen (1986) for 4;000 # Re # 35;000; in both
the developing and the fully developed flow regions. The angle of corrugation
was 308 and the best thermal performance, with identical pressure loss, was
achieved when the space ratio was the largest ðH=L ¼ 0:5Þ:
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Ali and Ramadhyani (1992) measured heat transfer and pressure drop, under
developing flow conditions, in a channel with five corrugation cycles and a
corrugation angle b ¼ 208: They used two values of the cannel height yielding
two different values of the space ratio (H=L ¼ 0:23 and H=L ¼ 0:15). Their
attention was directed to the laminar and transitional regimes, and heat
transfer data were obtained over the range 100 # Re # 4;000: In the steady
laminar range, convection enhancements were marginal with respect to a
parallel-plate channel, but friction factors were significantly greater in wavy
channels. Once again the best thermal performance (with identical pumping
power, pressure gradient, or mass flow) was achieved when the space ratio was
the largest ðH=L ¼ 0:23Þ:

Using steady flow models Asako et al. (1988), Xin and Tao (1988), and Yang
et al. (1997) studied flow and heat transfer in the fully developed region of two-
dimensional channels for several space ratios and corrugation angles. Xin and
Tao (1988) and Asako et al. (1988) employed finite difference methods and
considered the laminar flow range ð100 # Re # 1;000Þ; while Yang et al. (1997)
utilised a finite volume method and considered both the laminar and the
transitional flow range (100 # Re # 2; 500Þ: They all found that convection
was enhanced by increasing corrugation angles and increasing space ratios.
They also found that Nusselt numbers increased with the Reynolds number,
despite the steady models adopted. These latter findings, however, do not agree
with the conclusions reached by Fiebig (1996), who performed numerical
simulations on the same geometries and claimed that no remarkable
enhancement of convection occurred in two-dimensional wavy channels as
long as the flow remained steady.

By means of an unsteady flow model and a finite element method, Comini
et al. (2002) determined convective coefficients and friction factors, for 100 #
Re # 1;000; in a two-dimensional channel with a space ratio H=L ¼ 0:22 and a
corrugation angle b ¼ 208: In the steady laminar range, convection coefficients
were larger in the entrance region than in the fully developed region. In the
fully developed region, below the critical value of the Reynolds number,
convection enhancements were marginal with respect to a parallel-plate
channel, even if friction factors raised significantly. With increasing Reynolds
numbers, the onset of time-periodic flow oscillations occurred first in the fully
developed region, and then moved upstream into the entrance region. Flow
oscillations, associated with transverse vortices, enhanced convection by
transporting fluid particles from the walls to the core and downstream. On the
contrary, transverse vortices that remained steady only increased friction
factors by creating recirculation zones where no fresh fluid entered.

The aforementioned studies represent a substantial base of data. In
particular, all studies seem to agree on the enhancement effects connected
with the increase of the space ratio H/L and/or the corrugation angle b
(at least above the critical value of the Reynolds number). However, very few
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experimental studies refer to low Reynolds number flows, and no experimental
study takes into proper account the effect of the space ratio. In fact, changing
systematically the geometry of an experimental apparatus is a very expensive
task. Conversely, most numerical investigations have been based on the
assumption of steady flows and, consequently, cannot model the shedding of
transverse vortices. The aim of the present paper is to fill the gaps left by
previous investigations, using a finite element approach that accounts for the
time dependent physics of the flow. The model utilized here has been proposed
by Nonino and Comini (1998), and has been used also by Comini et al. (2002) for
the fully developed regions of wavy channels. In the present study, we
investigate the effects of space ratios and corrugation angles on fully developed
convection of air ðPr ¼ 0:7Þ in wavy channels. Flows are always laminar, both
below and above the critical value of the Reynolds number corresponding to
the onset of vortex shedding processes.

Statement of the problem
According to the two-dimensional approach illustrated by Comini et al. (2002),
a typical tube-fin exchanger can be schematised by a series of identical
geometrical modules such as the one shown in Figure 1(a). In this paper we
consider several space ratios H/L in the range from 0.1 to 0.45, and two values
of the corrugation angle: b ¼ 208 and 308.

After a short distance from the entrance the velocity and thermal fields
repeat themselves, from module to module, attaining a fully developed
character. In the fully developed region, the repetitive fields allow the limitation
of the analysis to a single module, such as the one enclosed by the periodic

Figure 1.
Flow and convective heat

transfer in wavy
channels: (a) schematic

representation of the
geometry and

(b) computational cell in
the fully developed

region
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boundaries S1 and S3 in Figure 1(b). In the present case, however, it is possible
to reduce the computational domain still further. With reference to Figure 1(b),
in fact, one can consider only a single half-module, such as the one enclosed by
the anti-periodic boundaries S1 and S2. On these anti-periodic boundaries,
normal velocity components at corresponding points have the same value and
the same sign, while tangential velocity components have the same absolute
value but opposite sign. The relationships between dimensionless temperature
distributions on S1 and S2 can be found, following the procedure illustrated by
Nonino and Comini (1998), and Comini et al. (2002).

The flow field
Under the above assumptions, the momentum and continuity equations
governing the laminar flow of air can be written as
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In the fully developed flow region, the average pressure gradient is constant in
the axial direction. Consequently, with reference to the situation shown in
Figure 1(b), we can write

pðx; yÞ ¼ 2ax þ ~pðx; yÞ ð4Þ

as suggested by Patankar et al. (1977). In the above equation, a is a constant
representing the average pressure gradient in the main flow direction x, while p̃
is the periodic component of pressure.

On the basis of equation (4) the momentum equations, governing the fully
developed laminar flow of air, can be modified as follows
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Appropriate conditions must be imposed on wall, anti-periodic, inflow and
outflow boundaries. On wall boundaries, the usual no-slip boundary condition

u ¼ v ¼ 0 ð7Þ

is adopted.
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The anti-symmetric periodicity between boundaries S1 and S2 yields the
conditions

~pðL=2;H 2 y 0Þ ¼ ~pð0; yÞ ð8Þ

uðL=2;H 2 y 0Þ ¼ uð0; yÞ ð9Þ

vðL=2;H 2 y 0Þ ¼ 2vð0; yÞ ð10Þ

where y0 is the distance from the lower boundary measured in the y direction,
H is the height, and L is the projected length of one module. In fully developed
periodic flows, conditions (9) and (10) do not involve the specification of any
inflow velocity. Therefore, the pressure gradient a must be adjusted iteratively,
as described by Nonino and Comini (1998), until the desired value of the
average “inflow” velocity ū is reached.

The behaviour of the flow is determined by the Reynolds number

Re ¼
r�uDh

m
¼

2r�uH

m
¼

2 _m

m
ð11Þ

where Dh ¼ 2H is the hydraulic diameter. The pressure drop depends on the
Reynolds number and the apparent friction factor can be expressed as

f ¼
a Dh

r �u2=2
ð12Þ

since it is directly related to the average pressure gradient a.

The temperature field
In the absence of volumetric heating, and neglecting the effects of viscous
dissipation, the two-dimensional energy equation can be written as
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where a is the thermal diffusivity.
Appropriate conditions must be imposed on wall, anti-periodic, inflow and

outflow boundaries. On top and bottom walls, we specify the same wall
temperature

t ¼ tw ð14Þ

For anti-periodic boundaries S1 and S2 in the fully developed flow region, we
cannot write any simple relationship. However, as suggested by Kelkar
and Patankar (1987) and illustrated by Nonino and Comini (1998), we can use
the following equation
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tðL=2;H 2 y 0Þ2 tw

tbðL=2Þ2 tw
¼

tð0; yÞ2 tw

tbð0Þ2 tw
ð15Þ

which leads to the condition

tðL=2;H 2 y 0Þ ¼ 1 þ
tbðL=2Þ2 tbð0Þ

tbð0Þ2 tw

� �
tð0; yÞ2

tbðL=2Þ2 tbð0Þ

tbð0Þ2 tw
tw ð16Þ

In the above equations tb is the bulk temperature, which can be conveniently
defined as

tb ¼

RH

0 jujt dyRH

0 juj dy
ð17Þ

Equation (16) contains two unknown quantities: the bulk temperature at inflow
tb(0) and the difference between the bulk temperatures at outflow and inflow.
Thus, in the solution process, we first impose the value of the bulk temperature
difference, and then iterate until convergence is reached for a value of tb(0)
which verifies the periodicity condition.

The Reynolds number and the Prandtl number Pr ¼ n=a determine the
behaviour of the temperature field. This behaviour is characterized by the
overall, i.e. space-averaged, Nusselt number, defined as

Nu ¼
�hDh

k
¼

2�hH

k
ð18Þ

In the above equation, the average heat transfer coefficient is defined as

�h ¼
q

SDtlm
ð19Þ

on the basis of the absolute value q of the heat transfer rate, the exchange area
S, and the log-mean temperature difference

Dtlm ¼
½tw 2 tbðL=2Þ�2 ½tw 2 tbð0Þ�

ln{½tw 2 tbðL=2Þ�=½tw 2 tbð0Þ�}
ð20Þ

computed over a half-module.

Numerical solution
The momentum, continuity and energy equations are solved by an equal-order,
finite-element procedure based on the projection algorithm illustrated by
Nonino and Comini (1997) and Nonino et al. (1999). At each time step, a
pseudovelocity field is obtained by neglecting the pressure gradients in the
momentum equations. Then, by enforcing continuity on the pseudo-velocity
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field, a tentative pressure is estimated and the momentum equations are solved
for the tentative velocity field. Afterwards, continuity is enforced again to find
pressure corrections. Pressure corrections are also used to find the velocity
corrections that project the tentative velocity field onto a divergence-free space.
Once the velocity field has been found, the energy equation is solved before
moving to the next step.

The momentum and energy equations are dealt with as particular versions
of a general transport equation, written in the time-discretized form

g
fnþ1 2 fn

Dq
þ g vn · ½tv7f

nþ1 þ ð1 2 tvÞ7f
n�

¼ G½t G7
2fnþ1 þ ð1 2 t GÞ7

2fn� þ _s ð21Þ

for a generic variable f. The properties g and G, and the volumetric source rate
ṡ are identified by inspection of the appropriate original equations for velocity
components, pressure and temperature. The weighting factors tv and tG, both
in the range from 0 to 1, allow the selection of different time-integration
schemes. For example the Crank-Nicolson scheme, used in this work, results
from the choice: tv ¼ t G ¼ 0:5: The pressure equation and the pressure
correction equation are particular versions of the Poisson equation, which can
be obtained from equation (21) by assuming g ¼ 0 and t G ¼ G ¼ 1: The space
discretization of equation (21) is based on the Bubnov-Galerkin method, which
avoids the numerical diffusion connected with upwinding procedures. The
periodic boundary conditions are introduced as illustrated in detail by Nonino
and Comini (2002) and Comini et al. (2002).

In the numerical simulations, the systems of linear equations, arising at each
time step from the discretization process, were solved by means of iterative
algorithms. The conjugate gradient squared (CGS) method, described by
Howard et al. (1990), has been used to solve the discretized momentum and
energy equations. The modified conjugate gradient method ( MCG), illustrated
by Gambolati (1988) has been used to solve the symmetric systems obtained
from the discretization of the Poisson equations. In both cases, preconditioned
matrices have been obtained from an incomplete LU decomposition (ILU).

Results and discussion
The following examples concern the Prandtl number Pr ¼ 0:7 and several
Reynolds number in the range 100 # Re # 800: Space ratio values H=L ¼
0:10; 0.15, 0.20, 0.25 and 0.30 were considered with b ¼ 208; while values
H=L ¼ 0:10; 0.15, 0.20, 0.25, 0.30, 0.35 and 0.45 were considered with b ¼ 308:
In the computations, we utilized the boundary conditions discussed in the
previous sections. The program had already been validated by Comini et al.
(2002), Nonino and Comini (1998). In particular, by imposing periodicity
conditions on a portion of a plain channel, they found that results for the fully
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developed situation are independent, as expected, of the Reynolds and Prandtl
number. In fact, the numerical results agree, to the third digit, with the
analytical solutions: Nu0 ¼ 7:5407 and ð f ReÞ0 ¼ 96:00 reported by Shah and
Bhatti (1987).

Grid independence was established on the basis of calculations in which the
distance between grid points was progressively reduced by 30 per cent from
one simulation to another. When a further decrease led to a change in the
average Nusselt numbers smaller that 1 per cent, the results were considered
grid-independent. In the final simulations we used grids consisting of a
minimum of 1,925 nodes, for the largest space ratios, to a maximum of 5,825
nodes, for the smallest space ratios. As usual, grid spacing was finer near the
walls. Similarly, time-step independence was established on the basis of
preliminary calculations in which the dimensionless time step �uDq=L was
progressively reduced by 30 per cent from one simulation to another. When a
further decrease led to a change in the average Nusselt numbers smaller than
1 per cent, the results were considered independent on the time step. In the final
simulations, the backward Euler scheme was used for steady state flows, with
a dimensionless value of the time step equal to 0.05, while the Crank-Nicolson
scheme was used for time-periodic flows, with a dimensionless value of the
time step equal to 0.01.

In the range of Reynolds number investigated, solutions were steady up to
the critical values of the Reynolds number Recr, and became time-periodic for
Re . Recr: In time-periodic situations, overall parameters were further
averaged over a period Q, yielding single representative values. This way
time averaged values

kwl ¼
1

Q

Z qþQ

q

wðqÞ dq ð22Þ

were obtained for w ¼ f or Nu. However, to reduce confusion in the notation,
the symbol k l has been omitted in the following.

Influence of geometry
The influence of geometries is best established with reference to steady flows in
the sub-critical range. At Re ¼ 200 we have such flows in all the channels
considered. The corresponding streamline contours are shown in Figure 2. As
we can see, the transverse vortices, generated at the peaks of the corrugations,
are associated with repeated separations and reattachments of the flow. The
irregularities of the flow increase with both the space ratio and the corrugation
angle even if, as already pointed out, the flow remains steady. It is also
apparent that the irregularities of the flow do not lead to a significant mixing
between core and wall regions. Thus it can be expected that, with increasing
values of the space ratio and the corrugation angle, friction factors grow but
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Nusselt numbers are not significantly enhanced, at least as long as flows
remain steady.

Influence of flow oscillations
At Reynolds numbers above the critical value Recr, the transverse vortices start
detaching periodically and moving downstream, leading to a time-periodic
behaviour of both velocity and temperature fields. The exact determination of
Recr is an almost impossible task since the transients become longer and the
amplitudes of oscillations tend to zero when the critical point is approached.
Therefore, the values reported in Table I are slightly above the critical ones,
and have been found by a trial-and-error procedure in which temperature
oscillations are monitored at selected points. It is interesting to note that Recr

first decreases and then increases with the space ratio. In fact, with decreasing
values of the space ratio the behaviour of the flow in wavy channels tends to
the behaviour of the flow in a plain channel, since the length of a single module
tends to infinity. Similarly, with increasing values of the space ratio, and a
constant value of the corrugation angle, the behaviour of the flow tends to the
behaviour of the flow in a plain, albeit rough, channel, since the length of a
single module tends to zero.

Figure 2.
Streamline contours for

steady flows at Re ¼ 200
in wavy channels with

space ratios H/L ¼ 0.15,
0.25 and 0.35, and
corrugation angles
b ¼ 208 (left) and

308 (right)

Space ratio H/L b ¼ 208 b ¼ 308

0.10 690 460
0.15 510 340
0.20 380 220
0.25 360 200
0.30 370 190
0.35 540 180
0.45 – 260

Table I.
Approximate values

of the critical
Reynolds number in

wavy channels

Effect of space
ratio and

corrugation angle

509



From Table I it can be inferred that, at Re ¼ 700; vortex shedding occurs in all
the channels investigated. Thus the streamline contours shown in Figure 3, are
instantaneous representations. As already pointed out, the self-sustained
oscillations of the flow transport fluid particles from the walls to the core and
downstream, significantly enhancing convection.

The behaviour of the Nusselt number, at Re ¼ 700; is shown in Figures 4
and 5 for b ¼ 208 and 308; respectively. In these figures we report, on the left,
the variations of the space averaged Nusselt number vs the dimensionless time

u ¼
q�u

Dh
ð23Þ

and, on the right, the corresponding spectra of the peak-to-peak amplitudes
ANU as a function of the Strouhal number

St ¼
Dh

�uQ
ð24Þ

As we can see, both the time behaviour of the Nusselt number and the
amplitude of the sub-harmonics depend on the space ratio and the corrugation
angles.

Influence of the Reynolds number
The momentum and heat transfer characteristics of wavy channels can be
described in terms of overall Nusselt numbers and apparent friction factors
multiplied by the Reynolds number. Usually, the Nu and f Re values pertaining
to the wavy fins are divided by the corresponding Nu0 and f0 Re values
pertaining to the fully developed region of a plain channel at the same Reynolds
number. The behaviours of the ratios f/f0 and Nu/Nu0 vs Re are reported in
Figures 6 and 7 for b ¼ 208 and 308, respectively. As we can see friction factors
always increases with the Reynolds number, while Nusselt numbers increase
significantly only above the critical value of the Reynolds number.
Furthermore, both friction factors and Nusselt numbers increase when the

Figure 3.
Instantaneous
representations of
streamline contours for
unsteady flows at
Re ¼ 700 in wavy
channels with space
ratios H/L ¼ 0.15, 0.25
and 0.35, and corrugation
angles b ¼ 208 (left) and
308 (right)
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corrugation angle increases from 208 to 308. On the contrary, with increasing
values of the space ratio, the friction factor and the Nusselt number increase
but only up to a certain value.

The above findings are better shown in Figure 8 where, for Re ¼ 700; we
report the behaviours of the f/f0 and Nu/Nu0 ratios vs the space ratio. These
results confirm that, with both decreasing and increasing values of the space
ratio, the behaviour of the flow in wavy channels tends to the behaviour of the
flow in a plain channel. In fact, as already pointed out, the length of a single
module tends to infinity with decreasing values of the space ratio, while the
flow passage becomes a plain, albeit rough, channel with a constant value of

Figure 4.
Unsteady convection at

Re ¼ 700 in wavy
channels with space

ratios H/L ¼ 0.15, 0.25
and 0.35, and a

corrugation angle
b ¼ 208: time behaviours

of the space-averaged
Nusselt number (left) and

corresponding spectra
(right)
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the corrugation angle and increasing values of the space ratio. Similar
conclusions had been reached by Ergin et al. (1996) for the friction factor, and
can also be inferred from the numerical results presented by Fiebig (1996) for
both the friction factor and the Nusselt numbers.

Evaluation of performances
In boundary layer flows, the momentum and heat transfer characteristics are
related by the Chilton-Colburn analogy, which can be written in the form

Figure 5.
Unsteady convection at
Re ¼ 700 in wavy
channels with space
ratios H/L ¼ 0.15, 0.25
and 0.35, and a
corrugation angle
b ¼ 308: time behaviour
of the space-averaged
Nusselt numbers (left),
and corresponding
spectra (right)
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1 ¼
j

f
¼

Nu

Re Pr1=3

1

f
¼ const: ð25Þ

where j is the Colburn factor for heat transfer, and 1 can be interpreted as a
goodness factor. This analogy is strictly valid for boundary layer flows over a
flat plate. However, by adjusting the value of the constant, it can be applied
with good results to any non-recirculating flow. For example, in the case of
Pr ¼ 0:7 and fully developed laminar flow and thermal fields in a plain
channel, we obtain

10 ¼
j

f

� �
0

¼
Nu0

ð f ReÞ0Pr1=3
¼ 0:08847 ð26Þ

Figure 6.
Apparent friction factors

and overall Nusselt
numbers vs Reynolds

number in wavy
channels with different

space ratios and a
corrugation angle

b ¼ 208
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In recirculating flows, such as the ones occurring in wavy channels, the
Chilton-Colburn analogy cannot be expected to hold good. However, the ratio
1=10 can still be used as a goodness factor in performance comparisons such as
the ones shown in Figure 9.

As we can see, the increase in the corrugation angle does not have a
beneficial effect in terms of overall performance. Furthermore, the goodness
factor reaches a minimum for all configurations just before the onset of the self-
sustained oscillations.

Quantitative comparisons
Comparative evaluations of the results obtained are difficult, since the test
cases discussed in the literature refer to geometries, flow conditions and fluids
that are, almost invariably, different from the ones referred to in this paper. In
fact, we have arrived at the comparisons shown in Figure 10 by taking into

Figure 7.
Apparent friction factors
and overall Nusselt
numbers vs Reynolds
number in wavy
channels with different
space ratios and a
corrugation angle
b ¼ 308
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account literature data for fully developed flows in the 100 # Re # 700 range,
and wavy channels which, geometrically, do not differ much from the ones that
have been considered in this study.

For the friction factor, literature results that allow a significant comparison
have been presented by Ergin et al. (2001). They include numerical and
experimental data obtained by Asako et al. (1989) and Ergin et al. (1996, 2001),
for the corrugation angle b ¼ 308 and the H=L ¼ 0:43 and 0.48 space ratios. In
Figure 10, the comparison with our results for b ¼ 308 and H=L ¼ 0:45 shows
the expected trend and a reasonably good agreement.

For the Nusselt number, a significant comparison can be established with
the numerical results obtained from a steady flow model by Asako et al. (1988),
for the corrugation angle b ¼ 308 and H=L ¼ 0:14; 0.29 and 0.42 space ratios.
When plotted against the Reynolds number in Figure 10, Asako’s data show

Figure 8.
Apparent friction factors

and overall Nusselt
numbers vs space ratios

at Re ¼ 700, in wavy
channels with

corrugation angles
b ¼ 208 (above) and

308 (below)
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a nearly linear increase of the Nusselt number with the Reynolds number and
the aspect ratio. On the contrary, our data for b ¼ 308 and H=L ¼ 0:15; 0.30
and 0.45 show no remarkable enhancement of convection as long as the flow
remains steady. However, these findings are in accordance with Fieblig (1996).
The already discussed inversion of the trends with increasing values of the
aspect ratio is also apparent in our data.

Conclusions
We have investigated the enhancement of convection in laminar flows of air
through wavy finned-tube exchangers. By neglecting the influence of tubes,
pressure drop and heat transfer characteristics have been computed in the fully
developed regions of wavy flow passages with variable space ratios and
corrugation angles. The numerical model adopted is completely general, even

Figure 9.
Goodness factors vs
Reynolds numbers in
wavy channels with
corrugation angles
b ¼ 208 (above) and
308 (below)
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though the discretization process was based on the finite element method.
Velocity and temperature fields have been determined first. Quantitative
results have then been obtained for apparent friction factors, Nusselt numbers,
and goodness factors. In all the situations considered, the f Re parameter of
wavy channels is much higher than the one corresponding to the smooth
channel. On the contrary, a significant improvement of the average Nusselt
number can be obtained only for Reynolds number above the critical value. In
this case, the improvement can be attributed to the periodic washing of the
channel walls by travelling transverse vortices. Finally, it has been found that
both the friction factor and the Nusselt number increase when the corrugation
angle b increases from 208 to 308. On the contrary, with increasing values of the
space ratio H/L, the friction factor and the Nusselt number increase but only up
to a certain value. Consequently, the optimum value of the space ratio depends
on both the corrugation angle and the Reynolds number.

Figure 10.
Comparison of friction

factor and Nusselt data
for b ¼ 308 and different

values of the aspect
ratio H/L
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